
1

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

1

A Tutorial on Spectral Clustering
Part 2: Advanced/related Topics

Chris Ding
Computational Research Division

Lawrence Berkeley National Laboratory
University of California

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

2

Advanced/related Topics
• Spectral embedding: simplex cluster structure
• Perturbation analysis
• K-means clustering in embedded space
• Equivalence of K-means clustering and PCA
• Connectivity networks: scaled PCA & Green’s function
• Extension to bipartite graphs: Correspondence 

analysis 
• Random talks and spectral clustering
• Semi-definite programming and spectral clustering
• Spectral ordering (distance-sensitive ordering)
• Webpage spectral ranking: Page-Rank and HITS



2

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

3

Spectral Embedding:
Simplex Cluster Structure

(Ding, 2004)

Simplex Embedding Theorem.
Assume objects are well characterized by spectral 
clustering objective functions. In the embedded 
space, objects aggregate to K distinct centroids:
• Centroids locate on K corners of a simplex

• Simplex consists K basis vectors + coordinate origin
• Simplex is rotated by an orthogonal transformation T
• Columns of T are eigenvectors of a K × K embedding 
matrix Γ

• Compute K eigenvectors of the Laplacian.
• Embed objects in the K-dim eigenspace
What is the structure of the clusters?
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K-way Clustering Objectives
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Simplex Spectral Embedding Theorem
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Properties of Spectral Embedding

• Original basis vectors: 
�
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• Dimension of embedding is K-1: (q2, … qK)
– q1=(1,…,1)T is  constant & trivial
– Eigenvalues of  Γ (=eigenvalues of D-W)
– Eigenvalues determine how well clustering objective 

function characterize the data

• Exact solution for K=2
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2-way Spectral Embedding
(Exact Solution)

Eigenvalues
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Recover the original 2-way clustering objectives

For Normalized Cut, orthogonal transform T rotates

Tbbaaq ),,,,,(, 2 −−= ll   Tq )11(1 l=
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(Ding et al, KDD’01)Spectral clustering inherently consistent!
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Perturbation Analysis
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Assume data has 3 dense clusters sparsely connected.
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Off-diagonal blocks are between-cluster connections, 
assumed small and are treated as a perturbation

(Ding et al, KDD’01)
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Perturbation Analysis
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K-means clustering

• Developed in 1960’s (Lloyd, MacQueen, etc)
• Computationally Efficient (order-mN)
• Widely used in practice 

– Benchmark to evaluate  other algorithms
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K-means
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K-means Clustering in 
Spectral Embedded Space

Simplex spectral embedding theorem provides 
theoretical basis for K-means clustering in the 
embedded eigenspace 
– Cluster centroids are well separated (corners of the 

simplex)
– K-means clustering is invariant under (i) coordinate  

rotation x → Tx, and (ii) shift x → x + a
– Thus orthogonal transform T in simplex embedding un-

necessary
• Many variants of K-means (Ng et al, Bach & 

Jordan, Zha et al, Shi & Xu, etc)
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We have proved
Spectral embedding + K-means clustering
is the appropriate method

We now show :
K-means itself is solved by PCA
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Equivalence of K-means Clustering 
and Principal Component Analysis

• Cluster indicators specify the solution of K-means 
clustering

• Principal components are eigenvectors of the 
Gram (Kernel) matrix = data projections in the 
principal directions of the covariance matrix

• Optimal solution of K-means clustering: 
continuous solution of the discrete cluster 
indicators of K-means are given by 
Principal components

(Zha et al, NIPS’01;  Ding & He, 2003)
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Principal Component Analysis (PCA)

• Widely used in large number of different fields
– Best low-rank approximation (SVD Theorem, Eckart-

Young, 1930) : Noise reduction
– Unsupervised dimension reduction
– Many generalizations

• Conventional perspective is inadequate to explain 
the effectiveness of PCA

• New results: Principal components are cluster 
indicators for well-motivated clustering objective
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Principal Component Analysis
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2-way K -means Clustering
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2-way K-means Clustering

1)(,0)( 2 == ∑∑ ii iqiqCluster indicator satisfy:

Theorem: The (continuous) optimal solution of q
is given by the principal component v1 .

}0)(|{},0)(|{ 1211 ≥=<= iviCiviC
Clusters C1, C2 are determined by:

Once C1, C2 are computed, iterate K-mean to 
convergence

Relax the restriction q (i) take discrete values. 
Let it take continuous values in [-1,1]. Solution 
for q is the eigenvector of the Gram matrix.
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Multi-way K-means Clustering

Unsigned Cluster membership indicators h1, …, hK:
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Multi-way K-means Clustering
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Multi-way K-means Clustering 
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Regularized Relaxation of K-means Clustering

Transform to signed indicator vectors q1 - qk via 
the k x k orthogonal matrix T:
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(Regularized relaxation)

Theorem: The optimal solutions of q2
… qk are 

given by the principal components v2
… vk. JK is 

bounded below by total variance minus sum of 
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Scaled PCA
similarity matrix S=(sij) (generated from XXT)

Nonlinear re-scaling:
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(Ding, et al, 2002)
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Scaled principal components have optimality properties:

Ordering
– Adjacent objects along the order are similar
– Far-away objects along the order are dissimilar
– Optimal solution for the permutation index are given by 

scaled PCA.

Clustering
– Maximize within-cluster similarity
– Minimize between-cluster similarity
– Optimal solution for cluster membership indicators given 

by scaled PCA.

Optimality Properties of Scaled PCA
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Difficulty of K-way clustering
• 2-way clustering uses a single eigenvector
• K-way clustering uses several eigenvectors
• How to recover 0-1 cluster indicators H?
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Avoid computing the transformation T:

• Do K-means, which is invariant under T
• Compute connectivity network QQT, which cancels T
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Connectivity Network
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Connectivity network

• Similar to Hopfield network 
• Mathematical basis:  projection matrix
• Show self-aggregation clearly
• Drawback: how to recover clusters

– Apply K-means directly on C
– Use linearized assignment with cluster crossing 

and spectral ordering (ICML’04)
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Connectivity network: Example 1

268.0,300.0 22 == λλ
Between-cluster connections suppressed

Within-cluster connections enhanced
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Effects of self-aggregation
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Connectivity of Internet Newsgroups
NG2: comp.graphics
NG9: rec.motorcycles
NG10: rec.sport.baseball
NG15:sci.space
NG18:talk.politics.mideast

100 articles from each group. 
1000 words
Tf.idf weight. Cosine similarity

Spectral Clustering 89%
Direct K-means 66%

cosine similarity Connectivity matrix
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Spectral embedding is not 
topology preserving

700 3-D data points form 
2 interlock rings

In eigenspace, they 
shrink and separate
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Correspondence Analysis (CA)

• Mainly used in graphical display of data
• Popular in France (Benzécri, 1969)
• Long history

– Simultaneous row and column regression (Hirschfeld, 
1935)

– Reciprocal averaging (Richardson & Kuder, 1933; 
Horst, 1935; Fisher, 1940; Hill, 1974)

– Canonical correlations, dual scaling, etc.
• Formulation is a bit complicated (“convoluted” 

Jolliffe, 2002, p.342)
• “A neglected method”, (Hill, 1974)



16

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

31

Scaled PCA on a Contingency Table
⇒ Correspondence Analysis

Nonlinear re-scaling: 2/1
.. )(~ ,~ /2
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Information Retrieval

Bell Lab tech memos
5 comp-sci and 4 applied-math memo titles:
C1: Human machine interface for lab ABC computer applications
C2: A survey of user opinion of computer system response time
C3: The EPS user interface management system
C4: System and human system engineering testing of EPS
C5: Relation of user-perceived response time to error management
M1: The generation of random, binary, unordered trees
M2: The intersection graph of paths in trees
M3: Graph minors IV: widths of trees and well-quasi-ordering
M4: Graph minors: A survey
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words docs

Word-document matrix: row/col clustering

m1m2m3m4c2c5c3c1c4

111tree
111graph

11minors
11survey

11time
11response
11user
1computer
112system

11interface
11EPS

11human
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Row-column association

Column-column clustering

row-row clustering

Bipartite Graph: 3 types of Connectivity networks
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Example

row-row: FFT

column-column: GGT

row-column: FGT

Original data matrix
477.0,456.0 22 == λλ
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Internet Newsgroups

Simultaneous clustering 
of documents and words
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Random Walks and Normalized Cut

Similarity matrix W,

(Meila & Shi, 2001)
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Random walks between A,B:

Stochastic matrix

⇒ equilibrium distribution: d=π
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Semi-definite Programming for  
Normalized Cut

Normalized Cut :

(Xing & Jordan, 2003)
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Compute Z via SDP. Z=Y’Y’T. 
Y’’=D-1/2Y’. K-means on Y’’.

TYYZ =

Z = connectivity network
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Spectral Ordering
Hill, 1970, spectral embedding

Solution are eigenvectors of Laplacian 

xWDxwxxJ T

ij
ijji )()( 2 −=−=∑

Barnard, Pothen, Simon, 1993, envelop reduction of sparse 
matrix: find  ordering such that the envelop is minimized
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Find coordinate x to minimize
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Distance-sensitive ordering
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4-variable. For a given ordering, there are 3 
distance=1 pairs, two d=2 pairs, one d=3 pair. 
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Ordering is determined by  permutation indexes

The larger distance, the larger weights. Large distance 
similarities reduced more than small distance similarities

(Ding & He, ICML’04)
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Distance-sensitive ordering
Theorem. The continuous optimal solution for the 
discrete inverse permutation indexes are given by 
the scaled principal component q1. 

The shifted  and scaled inverse permutation indexes
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Relax the restriction on q. Allow it  be continuous.
Solution for q becomes the eigenvector of 

DqqSD  λ=− )(
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Re-ordering of Genes and Tissues

C. Ding, RECOMB 2002C. Ding, RECOMB 2002
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Webpage Spectral Ranking
Rank webpages from the hyperlink topology. 

L : adjacency matrix of the web subgraph

T
out eeLDTT 2.08.0 1, +== −  ππ

HITS (Kleinberg): rank according to 
principal eigenvector of authority matrix

qqLLT  λ=)(

PageRank (Page & Brin): rank according to 
principal eigenvector π(equilibrium distribution)

Eigenvectors can be obtained in closed-form
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Webpage Spectral Ranking
HITS (Kleinberg) ranking algorithm 

Theorem. Eigenvalues of  LTL

Assume web graph is fixed degree sequence 
random graph (Aiello, Chung, Lu, 2000)

⇒ HITS ranking is identical to indegree ranking
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Eigenvectors:

Principal eigenvector u1 is monotonic decreasing 
if hh>>> 321 ddd

(Ding, et al, SIAM Review ’04)



23

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

45

Webpage Spectral Ranking
PageRank: weight normalization
HITS : mutual reinforcement

LDLS out
T 1−=

Random walks on this similarity graph 
has the equilibrium distribution: Eddd T

n 2/),,,( 21 �

Combine PageRank and HITS. Generalize. ⇒

Ranking based on a similarity graph 

PageRank ranking is identical to indegree ranking

(1st order approximation, due to combination of PageRank & HITS)

(Ding, et al, SIGIR’02)
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PCA: a Unified Framework 
for clustering and ordering

• PCA is equivalent to K-means Clustering
• Scaled PCA has two optimality properties

– Distance sensitive ordering
– Min-max principle Clustering

• SPCA on contingency table ⇒ Correspondence Analysis
– Simultaneous ordering of rows and columns
– Simultaneous clustering of rows and columns

• Resolve open problems 
– Relationship between Correspondence Analysis and PCA (open 

problem since 1940s)
– Relationship between PCA and K-means clustering (open 

problem since 1960s)
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Spectral Clustering:
a rich spectrum of topics
a comprehensive framework for learning

A tutorial & review of spectral clustering

Tutorial website will post all related papers (send your papers)
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